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Motivation

I Describe vessel network in terms of a graph.

- Quantitative analysis of topological properties.

I Why quantify uncertainty in vessel networks?

- Visualisation for manual inspection and correction.

- Propagation of uncertainty into analysis of network properties.

- Model parameter inference in a maximum likelihood fashion.
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Background
Vessel Network Inference as Subgraph Optimization

Several recent approaches pose the task of inferring a vascular network from image data
as a minimum cost subgraph problem:

- Türetken et al. TPAMI (2016), Rempfler et al. MedIA (2015), Payer et al. MedIA (2016),

Robben et al. MedIA (2016)

Typical workflow:

1. Detect centerlines

2. Construct a hypothesis graph

3. Find the “best” subgraph

Candidates MAP Marginals
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Probabilistic Model over Subgraphs

I Subgraphs within G = (V ,E ) are encoded with binary indicator variables x = {0, 1}E

P (x|Ω, I ,Θ) ∝ P (Ω|x)
∏
ij∈E

P (xij |I ,Θ)
∏

C∈C(G)

P (xC |Θ) ,

where P (Ω|x) ∝

{
1 if x ∈ Ω,

0 otherwise
.

Feasibility

Edge termsEvents

- Constraints: cycle-free, at most bifurcations.

I Constraints may be generated on the fly.



3 / 9

Probabilistic Model over Subgraphs

I Subgraphs within G = (V ,E ) are encoded with binary indicator variables x = {0, 1}E

P (x|Ω, I ,Θ) ∝ P (Ω|x)
∏
ij∈E

P (xij |I ,Θ)
∏

C∈C(G)

P (xC |Θ) ,

where P (Ω|x) ∝

{
1 if x ∈ Ω,

0 otherwise
.

Feasibility

Edge terms

Events

- Edge probability: discriminatively trained, local classifier.

I Constraints may be generated on the fly.
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Probabilistic Model over Subgraphs

I Subgraphs within G = (V ,E ) are encoded with binary indicator variables x = {0, 1}E

P (x|Ω, I ,Θ) ∝ P (Ω|x)
∏
ij∈E

P (xij |I ,Θ)
∏

C∈C(G)

P (xC |Θ) ,

where P (Ω|x) ∝

{
1 if x ∈ Ω,

0 otherwise
.

FeasibilityEdge termsEvents

I MAP estimator as integer linear programm, optimized with a branch-and-cut algorithm.

I Constraints may be generated on the fly.
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Sampling
Perturbation Sampler, based on Papandreou and Yuille ICCV (2011)

I Samples are drawn by perturbing the original energy function and optimizing for

its perturbed MAP state.

I Original MAP estimator:

minimize
∑

(i ,j)∈E

xijwij +
∑
C∈C(G)

xCwC

s.t. x ∈ Ω, [x, xC ] ∈ ΩA, x ∈ {0, 1}

I ∆γij is derived as the difference of two Gumbel samples.
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Sampling
Perturbation Sampler, based on Papandreou and Yuille ICCV (2011)

I Samples are drawn by perturbing the original energy function and optimizing for

its perturbed MAP state.

I (First-order) Perturbed MAP estimator:

minimize
∑

(i ,j)∈E

xij(wij + ∆γij) +
∑
C∈C(G)

xCwC

s.t. x ∈ Ω, [x, xC ] ∈ ΩA, x ∈ {0, 1}

I ∆γij is derived as the difference of two Gumbel samples.
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Sampling
Gibbs Sampler, Geman and Geman TPAMI (1984)

I Metropolized version of Gibbs sampler (based on Liu (2001)):

- Randomized scan

- Acceptance probability: α = min
(

1,
1−π(xe |x\e)
1−π(x ′e |x\e)

)
I Flips that violate x ∈ Ω are never accepted: π(x ′e |x\e)→ 0.

I Checking feasibility is easier as we know which variable has changed.
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Experiments

I Construction of hypothesis graph G = (V ,E ):

- Centerline detection with trained regressor following Sironi et al. TPAMI (2015).

- Nodes v ∈ V : any local maxima after non-maxima suppression.

- Edges e ∈ E : shortest paths between any two nodes v ,w ∈ V s.t. d(v ,w) ≤ rmax.

I Quantitative comparison of approximated marginals:

- On small subgraphs → enables computation of true marginals under the given model by

enumeration of states.
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Results
Quantitative Comparison of Approximated Marginals

Perturbation Gibbs Local
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Results
Qualitative Results

Annotation MAP Perturbation Gibbs
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Conclusion & Outlook

Estimating uncertainties under the given model:

I Gibbs sampler: unbiased, yet higher variance. Might require adjustments of

hyperparameters with varying problem size/density.

I Perturbation sampler: biased, but straight forward to apply.

Limitations and directions for future work:

I Model choice for most informative marginals.

I Integration of uncertainty estimates in an actual workflow.

I Further work on sampling-based approaches for subgraph problems.


