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Motivation

» Describe vessel network in terms of a graph.
- Quantitative analysis of topological properties.

» Why quantify uncertainty in vessel networks?
- Visualisation for manual inspection and correction.
- Propagation of uncertainty into analysis of network properties
- Model parameter inference in a maximum likelihood fashion.
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Background

Vessel Network Inference as Subgraph Optimization

Several recent approaches pose the task of inferring a vascular network from image data
as a minimum cost subgraph problem:

- Tiretken et al. TPAMI (2016), Rempfler et al. MedIA (2015), Payer et al. MedIA (2016),
Robben et al. MedIA (2016)

Typical workflow:
1. Detect centerlines
2. Construct a hypothesis graph
3. Find the “best” subgraph
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Probabilistic Model over Subgraphs

» Subgraphs within G = (V, E) are encoded with binary indicator variables x = {0, 1}£

Feasibility
P (xI,1,0) o|P(Qx)| [ P (xs1!. ©) H P (xc|®),
jeE cec(G
1 if xeQ,

0 otherwise

where P (Q|x) o< {

- Constraints: cycle-free, at most bifurcations.
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Probabilistic Model over Subgraphs

» Subgraphs within G = (V, E) are encoded with binary indicator variables x = {0, 1}£
Edge terms

I Pxcl®).

cec(G)

P(x|Q,1,0) x P(]x)

1 if xeQ,

where P (Q|x) o< i
0 otherwise

- Edge probability: discriminatively trained, local classifier.
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Probabilistic Model over Subgraphs

» Subgraphs within G = (V, E) are encoded with binary indicator variables x = {0, 1}£

r Events
I] ° (xd@)].

cec(G)

P(xQ,1,0) x P(Qx) [] P (xsll. ©)
j€cE
1 if xeQ,

0 otherwise

where P (Q|x) o< {

- Events: penalize roots, terminals and bifurcations.



Probabilistic Model over Subgraphs

» Subgraphs within G = (V, E) are encoded with binary indicator variables x = {0, 1}£

P(xQ,1,0) x P(Qx) [] P (xsll. ©) H P (xc|®),
ij€eE cec(G
1 if xeQ,
where P (Q|x) o< v i
0  otherwise
» MAP estimator as integer linear programm, optimized with a branch-and-cut algorithm.

» Constraints may be generated on the fly.



Uncertainty Estimation



Sampling

Perturbation Sampler, based on Papandreou and Yuille ICCV (2011)

» Samples are drawn by perturbing the original energy function and optimizing for
its perturbed MAP state.

» Original MAP estimator:

minimize E XUW,J—FE XCWC

(iJ)eE ceC(G
s.t. xeQ, [x,xc]e QA, x € {0,1}



Sampling

Perturbation Sampler, based on Papandreou and Yuille ICCV (2011)

» Samples are drawn by perturbing the original energy function and optimizing for
its perturbed MAP state.

» (First-order) Perturbed MAP estimator:

minimize Z XU'(W/J'+ZXCwC

(iJ)eE CeC(G)
s.t. x€Q, [x,xc]ea xe{0,1}

» Ay is derived as the difference of two Gumbel samples.



Sampling

Gibbs Sampler, Geman and Geman TPAMI (1984)

» Metropolized version of Gibbs sampler (based on Liu (2001)):
- Randomized scan
- Acceptance probability: a = min (1, %ﬁ}iﬁ)

» Flips that violate x € Q are never accepted: m(xg|x\¢) — 0.

» Checking feasibility is easier as we know which variable has changed.



Experiments

» Construction of hypothesis graph G = (V, E):
- Centerline detection with trained regressor following Sironi et al. TPAMI (2015).
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Experiments

» Construction of hypothesis graph G = (V, E):

- Centerline detection with trained regressor following Sironi et al. TPAMI (2015).
- Nodes v € V: any local maxima after non-maxima suppression.
- Edges e € E: shortest paths between any two nodes v, w € V s.t. d(v, w) < finax.

» Quantitative comparison of approximated marginals:

- On small subgraphs — enables computation of true marginals under the given model by
enumeration of states.



Results

Quantitative Comparison of Approximated Marginals
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Results

Qualitative Results
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Conclusion & Outlook

Estimating uncertainties under the given model:

» Gibbs sampler. unbiased, yet higher variance. Might require adjustments of
hyperparameters with varying problem size/density.

» Perturbation sampler. biased, but straight forward to apply.

Limitations and directions for future work:
» Model choice for most informative marginals.
» Integration of uncertainty estimates in an actual workflow.

» Further work on sampling-based approaches for subgraph problems.



