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Convolutional Neural Networks

- Exploit the underlying structure of the data by learning filters applied to local patches of the input image
- Translational invariance (weight sharing)
- Hierarchical representation

- Substantially reduces the complexity of the model with respect to MLPs

- Highly successful for many analysis tasks on euclidean data (image, speech , natural language
processing...)
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Data defined on irregular graphs: Analogy

r:‘_‘ -uclidean data ﬁﬁ Irregular data
L :

Domain Structure

Regular pixel grid - Any graph structure

Same number of neighbours per node/ - Variable number of neighbours per
pixel node

Intrinsic node ordering - No node ordering

Node Signal/Features

Image intensities ‘ - Feature vector assigned to each node

Tasks

Image classification ‘ - Whole graph classification
Image segmentation Node classification
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Graph Convolutional Neural Networks
Geometric deep learning: r | ‘
going beyond Euclidean data
Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst ‘ ’w
- Extending the concept of CNNSs to irregular domains L —l
- Spatial filtering : sliding a filter of defined receptive field across the graph/ 7

2=) Most natural analogy with regular structures /
Intuitive interpretation

@ Requires defining a neighbourhood system and a node ordering -> not straightforward

- Spectral filtering: Exploiting the concept that convolutions in the spatial domain
corresponds to multiplications in the Fourier domain

&5 No neighbourhood, node ordering definition
Principled definition of the convolution operator
Can obtain strictly localised filters

@ Non transferrable between different graph structures



Spatial GCNs

- Tailored to a specific type of data [Kawahara et al. Neurolmage 2017]

- Learning a patch operator which represents the neighbourhood system

* €.g. using geodesic distance, diffusion kernels or mixture models [Monti et al. 2017,
Bronstein et al. 2017]

- Filters conditioned on graph edges [Simonovsky et al. 2017]

- Main advantage: Trained spatial GCNs can be applied to data defined on variable domain
structures

ulllg ClllU

Image source: http://vgl.ict.usc.edu/Research/GeometricDeepl earning/ 6
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Graph Signal Processing

The Emerging Field of Signal Processing on Graphs

Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains

David I Shuman', Sunil K. Narang *, Pascal Frossard’, Antonio Ortega? and Pierre Vandergheynst'
TEcole Polytechnique Fédérale de Lausanne (EPFL), Signal Processing Laboratory (LTS2 and LTS4)
1University of Southern California (USC), Signal and Image Processing Institute

- Analysing signals = € V — R defined on an undirected weighted graph
g={V,&,W}
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The Emerging Field of Signal Processing on Graphs
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Analysing signals * € VV — IR defined on an undirected weighted graph
Gg={V,& W}

Graph laplacian: L = D — W, D;; = Z Wij l
J

acts as a difference operator on the signal @

T
L is symmetric and positive semi-definite: L = U AU
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Graph Fourier Transform

- Analogy with the euclidean domain: expansion of a signal in terms of
eigenfunctions of the Laplace operator

. Graphsignal: £ € V — R

- Laplacian eigendecomposition: . = UAU T
- Graph Fourier transform: x=U TCE

- Graph inverse Fourier transform: &£ — U 3/5'

. Graph Fourier orthonormal basis: U € R <V

- Graph “frequencies” A = diag();) € R <Y
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Graph Fourier Transform

- Analogy with the euclidean domain: expansion of a signal in terms of
eigenfunctions of the Laplace operator

. Graphsignal: £ € V — R

- Laplacian eigendecomposition: . = UAU d
A T

- Graph Fourier transform: £ = U-x

- Graph inverse Fourier transform: &£ — U L

IRN x N |lrained spectral graphs
CNNs

c RVXN are non transferrable
across graphs

+ Graph Fourier orthonormal basis: U &€

- Graph “frequencies” A = diag()\z‘)

D. | Shuman et al. , "The emerging field of signal processing on graphs”, 2013 8
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Graph Fourier Transform: smoothness of the signal

g1 G2 oF

Spatial
domain Ll ] | L] ] | L] ]

Spectral (1) |
domain |

D. | Shuman et al. , "The emerging field of signal processing on graphs”, 2013 9



Graph convolution

Multiplication in the Fourier domain

go ¥ x = Uge(A)U" x

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering 2016
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Multiplication in the Fourier domain

- Fourier transform of x
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10



¢

Graph convolution

Multiplication in the Fourier domain

gp * X = Q(A)UTX Filtering in the Fourier domain

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering 2016
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Graph convolution

Multiplication in the Fourier domain
go ¥ x ={Uge(A)U" x
Inverse transform of the filtered signal
Filter 96 parametrised in the Fourier domain on the laplacian eigenvalues
& Computationally expensive
© Filters are not localised

Polynomial parametrisation of the filters [Defferrard et al. 2016]

K—1
gQ(A) = Z HkAk
k=0

10
Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering 2016
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Graph convolution

- Multiplication in the Fourier domain

go ¥ x ={Uge(A)U" x
Inverse transform of the filtered signal

- Filter 90 parametrised in the Fourier domain on the laplacian eigenvalues
& Computationally expensive
© Filters are not localised

- Polynomial parametrisation z%f tflwe filters [Defferrard et al. 20106]

go(A) = ’@ “* Learned parameters

k=0

10
Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering 2016
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Graph convolution

- Multiplication in the Fourier domain

go ¥ x ={Uge(A)U" x
Inverse transform of the filtered signal

- Filter 90 parametrised in the Fourier domain on the laplacian eigenvalues
& Computationally expensive
© Filters are not localised

- Polynomial parametrisation z%f trlwe filters [Defferrard et al. 20106]

k
go(A) = ’@ | earned parameters
k=0
25) Can be computed recursively directly from the laplacian

&) Strictly K-localised (K = order of the polynomials)

10
Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering 2016



Applications

- Semi-supervised classification [Kipf et al. 2016, Parisot et al. 2017]

N subjects Population graph Fully labelled graph
Feature vector
Imaging data | T @
S, | A o ) | T : , Graph Convolutional X1 @
S Neural Network )
= Semi-supervised

%,
S
.
s g
S T Y

Phenotypic data

S o @ e

Edge weights ’ @ )’ @;ﬁ

M labelled samples
N-M samples to classify

- Distance Metric learning [Ktena et al. 2017]
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Semi-supervised node classification

N subjects Population graph

Feature vector

Imaging data

Phenotypic data

ERECNETCN )

Edge weights

M labelled samples
N-M samples to classify
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Semi-supervised node classification

Input: Population graph Output layer Softmax

L hidden layers QE)\\\TN/&
Graph 6% )
— - p —3 : Cross

Entropy Loss

Convolution

One feature per label

13



Semi-supervised node classification

Output layer Softmax

Input: Population graph

Graph h N Cross
Convolution Entropy Loss

One feature per label
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Graph h N Cross
Convolution Entropy Loss
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Input: Population graph

Area Under Curve

Semi-supervised node classification

Output layer Softmax

Graph h N Cross
Convolution Entropy Loss

One feature per label

0.90 0.90

Autism Spectrum Disorder MCI conversion

0.85 0.85
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©
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Distance metric learning

raw fMRI timeseries

connectivity matrix

correlation

Con seaded ) ...
Pearson’s | 2

labelled graph

—)
graph

construction
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database

Distance metric learning: Results on ABI
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Distance metric learning:
database

Results on ABID

Euclidean GCN
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Conclusion

- Graph Convolutional Neural Networks

+  Adapt the concept of CNNs to signals defined on non-
Euclidean domains

+ Increasing popularity in the computer vision/machine
learning fields (social, medical, graphics applications etc.)

- \Very recent concept, many research opportunities
+ Which model to use?
+ Fixed graph: spectral CNNs

- Variable graph, meshes: spatial CNNs 16
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