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Convolutional Neural Networks
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Image source: http://www.computervisionblog.com/

• Exploit the underlying structure of the data by learning filters applied to local patches of the input image 

• Translational invariance (weight sharing) 

• Hierarchical representation 

• Substantially reduces the complexity of the model with respect to MLPs 

• Highly successful for many analysis tasks on euclidean data (image, speech , natural language 
processing…)

http://www.computervisionblog.com/
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Data defined on irregular graphs: Analogy
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Euclidean data Irregular data

Domain Structure

Node Signal/Features

Tasks

• Regular pixel grid 
• Same number of neighbours per node/

pixel 
• Intrinsic node ordering

• Any graph structure 
• Variable number of neighbours per  

node 
• No node ordering

• Image intensities • Feature vector assigned to each node

• Image classification 
• Image segmentation

• Whole graph classification 
• Node classification
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• Extending the concept of CNNs to irregular domains

• Spatial filtering : sliding a filter of defined receptive field across the graph

✓ Most natural analogy with regular structures 
Intuitive interpretation 

- Requires defining a neighbourhood system and a node ordering -> not straightforward

• Spectral filtering: Exploiting the concept that convolutions in the spatial domain 
corresponds to multiplications in the Fourier domain

✓ No neighbourhood, node ordering definition  
Principled definition of the convolution operator  
Can obtain strictly localised filters

- Non transferrable between different graph structures

Graph Convolutional Neural Networks
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• Tailored to a specific type of data [Kawahara et al. NeuroImage 2017] 

• Learning a patch operator which represents the neighbourhood system  

• e.g. using geodesic distance, diffusion kernels or mixture models [Monti et al. 2017, 
Bronstein et al. 2017] 

• Filters conditioned on graph edges [Simonovsky et al. 2017] 

• Main advantage: Trained spatial GCNs can be applied to data defined on variable domain 
structures  

Spatial GCNs

6Image source: http://vgl.ict.usc.edu/Research/GeometricDeepLearning/

http://vgl.ict.usc.edu/Research/GeometricDeepLearning/
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• Analysing signals                      defined on an undirected weighted graph 

• Graph laplacian:  
 
acts as a difference operator on the signal  
 
 

• L is symmetric and positive semi-definite:

G = {V, E ,W}
L = D �W,Dii =

X

j

Wij

(Lx)(i) =
X

j2Ni

Wij [x(i)� x(j)]

L = U⇤UT

x 2 V ! R

x 2 V ! R
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• Analogy with the euclidean domain: expansion of a signal in terms of 
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• Graph signal: 

• Laplacian eigendecomposition: 

• Graph Fourier transform: 
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• Analogy with the euclidean domain: expansion of a signal in terms of 
eigenfunctions of the Laplace operator

• Graph signal: 

• Laplacian eigendecomposition: 

• Graph Fourier transform: 

• Graph inverse Fourier transform:

• Graph Fourier orthonormal basis:

• Graph “frequencies”:  

x 2 V ! R

L = U⇤UT

x̂ = U

T
x

x = Ux̂

U 2 RN⇥N

⇤ = diag(�i) 2 RN⇥N

D. I Shuman et al. , "The emerging field of signal processing on graphs” , 2013

Trained spectral graphs  
CNNs  

are non transferrable  
across graphs



Graph Fourier Transform: smoothness of the signal

9D. I Shuman et al. , "The emerging field of signal processing on graphs” , 2013

Spatial 
domain

Spectral 
domain
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• Multiplication in the Fourier domain  
 

• Filter      parametrised in the Fourier domain on the laplacian eigenvalues 

- Computationally expensive

- Filters are not localised

• Polynomial parametrisation of the filters [Defferrard et al. 2016]

• Can be computed recursively directly from the laplacian  

• Strictly K-localised (K = order of the polynomials)
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• Semi-supervised classification [Kipf et al. 2016, Parisot et al. 2017] 

 

• Distance Metric learning [Ktena et al. 2017] 

Applications
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Semi-supervised node classification
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Distance metric learning: Results on ABIDE 
database
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• Graph Convolutional Neural Networks

• Adapt the concept of CNNs to signals defined on non-
Euclidean domains

• Increasing popularity in the computer vision/machine 
learning fields (social, medical, graphics applications etc.)

• Very recent concept, many research opportunities

• Which model to use?

• Fixed graph: spectral CNNs 

• Variable graph, meshes: spatial CNNs

Conclusion
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