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Introduction

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder

- ltis widely distributed across the brain, affecting both gray and white matter, and
involves atypical brain connectivity
- ltis difficult to diagnose (i.e., changes can be subtle)

- Recent research focuses on applying machine learning (ML) techniques to brain
networks of structural or functional connectivity, derived from MRI scans.
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Motivation

Features for Machine Learning
» Limitations of Previous Work
— Structural and functional connectomes are extensively studied whereas
morphological features are largely ignored (77 studies identified in Brown et al.
2016)
— Acquiring fMRIl and dMRI sequences is more time-consuming than conventional
T1-w MRI = these are prolonged and can be stressful for subject and family
— Current measures, involving 2 ROls, may be too fine-grained and specific to

capture the larger scale, cross-brain atypical connectivity suspected of ASD.
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Features for Machine Learning
» Proposed connectomic data representation
+ Explore the use of morphological features by constructing graphs of multiple

morphological “views” of the brain (e.g., cortical thickness)

+ Construct a high order network (HON) for each subject incorporating all
morphological views =» better captures more widespread, higher order
connectivity and the relationships between the views.

HONSs are too large and computationally expensive
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Feature Reduction Methods
» Limitations of Some Previous Works
— Statistical test based methods (e.g., t-test) cannot leverage the graph structure of

connectomes in selecting features

— Graph-based dimensionality reduction methods (e.g., Local Linear Embedding
(LLE)) explore the data distribution using a fixed number of neighbors to each
data point

> overlooks cases where data points have different density distribution on the
manifold

=» Does not allow to tease apart close manifolds (for classification or clustering)
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» Proposed feature embedding method

+ Use a dimensionality reduction method that leverages the data graph structure.

+ Can handle the potentially very close manifolds (i.e., subpopulations) involved in
connectomic morphological data representation.

+ Can automatically learn neighbourhoods of varying sizes for a better, more
representative connectomic feature embedding.

+ Can learn a similarity matrix for encoding the relationship between different
connectomic features and can be easily integrated into a supervised classification
framework.

=» Based on (Elhamifar and Rene, 2011), we propose a sparse graph embedding

(SGE) of connectomic data for ASD diagnosis.

Elhamifar and Vidal. "Sparse manifold clustering and embedding." Advances in neural information processing systems. 2011.
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Connectomic data representation

Low Order Networks

- 2 connectomes are constructed for each morphological view of the brain (1 for each

hemisphere), for every subject

i 1

Cortical ROIs

Cortical ROIs

- Nodes represent cortical ROls; edges represent the absolute difference between a

morphological measure’s average for a region (taken across all vertices in a specific

region), and the connected region’s average. BASN
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High Order Networks

- For each hemisphere of each subject all views are integrated into a single HON

- A node of the HON represents a pair of ROls. An edge is calculated by first

constructing a vector (for each node) of the connectivity strength values between the

given pair of ROls, from every LON:

- : - B ROl pair 1 connectivity strength vector

R RS B ROl pair 2 connectivity strength vector

- The edge then represents the correlation between these two vectors. BASH
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Subject 1 HON

Feature Extraction Feature Vector
Subject 1 HON
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» HON Feature Vectors
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- As connectomes are symmetrical, the

elements of the upper triangles are

extracted and vectorized, excluding the

diagonal.
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» CON Feature Vectors
- All LONSs are also vectorized, then all of a subject’s vectors are concatenated into 1

feature vector, including both hemispheres of every view.
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Sparse Graph Embedding
» Build a Similarity Matrix
- Build the similarity matrix W from the learned graph of the relationship between

data points lying in different connectomic manifolds.
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Sparse Graph Embedding
» Generate Low-Dimensional Embedding
- Eigen-decomposition of the normalized Laplacian matrix of the learned similarity

matrix W.
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» Training and Test Data
- Train SVM- SGE is conducted on the training data

to obtain the training features
- Test SVM- SGE is conducted on the full dataset,

SGE
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Graph Learning
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+ Encourages a sparse selection of nearby connectomic points that lie in the same manifold
and span a low-dimensional affine subspace passing near point .
+ The number of sparsely selected neighbors for each datapoint depends on the datapoint

and its local neighborhood and ideally would belong to the same manifold =» This better

handles variation in the density of data points on the manifold.
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Graph Learning
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+ Perform dimensionality reduction using the learned matrix W.
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Dataset

- 102 Subjects from the Autism Brain Imaging Data Exchange (59 ASD, 43 NC)
- Leave-one-out cross-validation scheme
- FREESURFER was used to reconstruct both hemispheres for every subject, which were
then parcellated into 35 ROIs using Desikan-Killiany Atlas.
- Morphological views:
1) C1 = Maximum principal curvature
2) C2 = Mean cortical thickness
)
)

3
4

C3 = Mean sulcal depth

C4 = Mean of average curvature
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Results

Parameters

A nested grid search approach was used to find the intrinsic dimension of the

manifold for feature embedding (LLE = 50, SGE = 9)
We estimate W,, to train SVM, then rebuild W, (including both training and testing

subjects), and classify the testing subject.

Comparison Methods

RAW - Feature vectors are classified with no feature reduction employed
T-test - T-tests are used to select a number of the most discriminative features
LLE - A local linear embedding of the features is carried out reduce the dimensionality

of the features for classification
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Feature Types

- CON - Simple, concatenated, low order features vector

- HON - High order feature vector
- CC(HON) - Clustering coefficient of the HONs, as another preliminary feature

reduction method




Results

Features Accuracy (%) Sensitivity (%) Specificity (%)
View 1 51.9608 48.8372 54.2373 65
View 3 53.9216 44,1860 61.0169
View 5 47.0588 37.2093 54.2373
View 6 47.0588 41.8605 50.8475 60 B
CON 52.9412 37.2093 64.4068
HON 52.9412 44,1860 59.3220 S
CC(HON) 46.0784 32.5581 55.9322 < N
HON + CON 53.9216 46.5116 59.3220 g
CC(HON) + CON 51.9608 39.5349 61.0169 § 0
CC(HON) (T-Test) 47.0588 32.5581 57.6271 <
HON + CON (T-test) 55.8824 37.2093 69.4915
CC(HON) + CON (T-test) 52.9412 37.2093 64.4068 45 —— — ——

CC(HON) (LLE) 58.8235 60.4651 57.6271
HON + CON (LLE) 50.9804 55.8140 47.4576
CC(HON) + CON (LLE) 43.1373 32.5581 50.8475
CC(HON) (SGE) 52.9412 62.7907 45.7627
HON + CON (SGE) 50 51.1628 49.1525
CC(HON) + CON (SGE) 61.7647 62.7907 61.0169 Row MT-Test WLLE ®™SGE

40
CC(HON) HON + CON CC(HON) + CON

Type of Features
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On-going Work

Whole-Brain HONs
- Asthe corpus callosum has been implicated in ASD, we might expect cross-

hemisphere connectivity to be affected and therefore more discriminative

- Incorporating both hemispheres in HONs could produce better accuracies;

preliminary work found 63.16% accuracy for raw, whole-brain HONS.
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Conclusion

Summary

» High-order networks using cortical morphological attributes.

» Jointly integrated multiple cortical morphological network for autism identification

» Utilized sparse graph embedding for high-dimensional connectomic data reduction.
Future work

» Evaluation of the method on the whole ABIDE dataset (for more powerful statistical analysis)

» Instead of decoupling sparse graph learning and classification, we can extend SGE into a

semi-supervised graph learning method for higher classification accuracy.

» Compare morphological networks with functional and structural networks in performance
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