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Introduction
- Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder

- It is widely distributed across the brain, affecting both gray and white matter, and 
involves atypical brain connectivity

- It is difficult to diagnose (i.e., changes can be subtle)

- Recent research focuses on applying machine learning (ML) techniques to brain 
networks of structural or functional connectivity, derived from MRI scans.



Features for Machine Learning

Ø Limitations of Previous Work

− Structural and functional connectomes are extensively studied whereas 

morphological features are largely ignored (77 studies identified in Brown et al. 

2016) 

− Acquiring fMRI and dMRI sequences is more time-consuming than conventional 

T1-w MRI è these are prolonged and can be stressful for subject and family

− Current measures, involving 2 ROIs, may be too fine-grained and specific to 

capture the larger scale, cross-brain atypical connectivity suspected of ASD.

Motivation



Features for Machine Learning

Ø Proposed connectomic data representation

+ Explore the use of morphological features by constructing graphs of multiple 

morphological “views” of the brain (e.g., cortical thickness)

+ Construct a high order network (HON) for each subject incorporating all 

morphological views è better captures more widespread, higher order 

connectivity and the relationships between the views.

- HONs are too large and computationally expensive

Motivation



Motivation
Feature Reduction Methods

Ø Limitations of Some Previous Works

− Statistical test based methods (e.g., t-test) cannot leverage the graph structure of 

connectomes in selecting features

− Graph-based dimensionality reduction  methods (e.g., Local Linear Embedding 

(LLE)) explore the data distribution using a fixed number of neighbors to each 

data point 

è overlooks cases where data points have different density distribution on the 

manifold

è Does not allow to tease apart close manifolds (for classification or clustering)



Ø Proposed feature embedding method

+ Use a dimensionality reduction method that leverages the data graph structure.

+ Can handle the potentially very close manifolds (i.e., subpopulations) involved in 

connectomic morphological data representation.

+ Can automatically learn neighbourhoods of varying sizes for a better, more 

representative connectomic feature embedding. 

+ Can learn a similarity matrix for encoding the relationship between different 

connectomic features and can be easily integrated into a supervised classification 

framework.

è Based on (Elhamifar and Rene, 2011), we propose a sparse graph embedding 

(SGE) of connectomic data for ASD diagnosis.

Motivation

Elhamifar and Vidal. "Sparse manifold clustering and embedding." Advances in neural information processing systems. 2011.



Connectomic data representation
Low Order Networks

- 2 connectomes are constructed for each morphological view of the brain (1 for each 

hemisphere), for every subject

- Nodes represent cortical ROIs; edges represent the absolute difference between a 

morphological measure’s average for a region (taken across all vertices in a specific 

region), and the connected region’s average.
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High Order Networks

- For each hemisphere of each subject all views are integrated into a single HON

- A node of the HON represents a pair of ROIs. An edge is calculated by first 

constructing a vector (for each node) of the connectivity strength values between the 

given pair of ROIs, from every LON:

- The edge then represents the correlation between these two vectors.

ROI pair 1 connectivity strength vector

ROI pair 2 connectivity strength vector

Connectomic data representation



Proposed Method
Feature Extraction

Ø HON Feature Vectors

- As connectomes are symmetrical, the 

elements of the upper triangles are 

extracted and vectorized, excluding the 

diagonal.

Ø CON Feature Vectors

- All LONs are also vectorized, then all of a subject’s vectors are concatenated into 1 

feature vector, including both hemispheres of every view.

Subject 1 HON
Feature Vector

Subject 1 HON



Proposed Method
Sparse Graph Embedding

Ø Build a Similarity Matrix

- Build the similarity matrix W from the learned graph of the relationship between 

data points lying in different connectomic manifolds.
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Proposed Method
Sparse Graph Embedding

Ø Generate Low-Dimensional Embedding

- Eigen-decomposition of the normalized Laplacian matrix of the learned similarity 

matrix W.

Low-dimensional data embedding

NC

ASD
Linear SVM classifier

Ø Training and Test Data
- Train SVM- SGE is conducted on the training data 

to obtain the training features
- Test SVM- SGE is conducted on the full dataset, 

and the test partition extracted from the result.
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+ Encourages a sparse selection of nearby connectomic points that lie in the same manifold 

and span a low-dimensional affine subspace passing near point i.

+ The number of sparsely selected neighbors for each datapoint depends on the datapoint

and its local neighborhood and ideally would belong to the same manifold è This better 

handles variation in the density of data points on the manifold. 

Graph Learning



Graph Learning

+ Perform dimensionality reduction using the learned matrix W.

The learned similarity matrix



Results
Dataset

- 102 Subjects from the Autism Brain Imaging Data Exchange (59 ASD, 43 NC)

- Leave-one-out cross-validation scheme

- FREESURFER was used to reconstruct both hemispheres for every subject, which were 

then parcellated into 35 ROIs using Desikan-Killiany Atlas.

- Morphological views:

1) C1 = Maximum principal curvature

2) C2 = Mean cortical thickness

3) C3 = Mean sulcal depth

4) C4 = Mean of average curvature



Results
Parameters

- A nested grid search approach was used to find the intrinsic dimension of the 

manifold for feature embedding (LLE = 50, SGE = 9)

- We estimate Wtr to train SVM, then rebuild Wts (including both training and testing 

subjects), and classify the testing subject.

Comparison Methods

- RAW – Feature vectors are classified with no feature reduction employed

- T-test – T-tests are used to select a number of the most discriminative features

- LLE – A local linear embedding of the features is carried out reduce the dimensionality 

of the features for classification



Results
Feature Types

- CON – Simple, concatenated, low order features vector

- HON – High order feature vector

- CC(HON) – Clustering coefficient of the HONs, as another preliminary feature 

reduction method



Results
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Type of Features

Raw T-Test LLE SGE

Features Accuracy (%) Sensitivity (%) Specificity (%)

View 1 51.9608 48.8372 54.2373
View 3 53.9216 44.1860 61.0169
View 5 47.0588 37.2093 54.2373
View 6 47.0588 41.8605 50.8475
CON 52.9412 37.2093 64.4068
HON 52.9412 44.1860 59.3220

CC(HON) 46.0784 32.5581 55.9322
HON + CON 53.9216 46.5116 59.3220

CC(HON) + CON 51.9608 39.5349 61.0169
CC(HON) (T-Test) 47.0588 32.5581 57.6271

HON + CON (T-test) 55.8824 37.2093 69.4915

CC(HON) + CON (T-test) 52.9412 37.2093 64.4068

CC(HON) (LLE) 58.8235 60.4651 57.6271
HON + CON (LLE) 50.9804 55.8140 47.4576

CC(HON) + CON (LLE) 43.1373 32.5581 50.8475
CC(HON) (SGE) 52.9412 62.7907 45.7627

HON + CON (SGE) 50 51.1628 49.1525
CC(HON) + CON (SGE) 61.7647 62.7907 61.0169



On-going Work
Whole-Brain HONs

- As the corpus callosum has been implicated in ASD, we might expect cross-

hemisphere connectivity to be affected and therefore more discriminative

- Incorporating both hemispheres in HONs could produce better accuracies; 

preliminary work found 63.16% accuracy for raw, whole-brain HONs.

ROI pair 1 connectivity strength vector

ROI pair 2 connectivity strength vector



Summary

Ø High-order networks using cortical morphological attributes. 

Ø Jointly integrated multiple cortical morphological network for autism identification

Ø Utilized sparse graph embedding for high-dimensional connectomic data reduction. 

Future work

Ø Evaluation of the method on the whole ABIDE dataset (for more powerful statistical analysis)

Ø Instead of decoupling sparse graph learning and classification, we can extend SGE into a 
semi-supervised graph learning method for higher classification accuracy.

Ø Compare morphological networks with functional and structural networks in performance

Conclusion 
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