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Motiaton

● Detecton and accurate localizaton of 

anatomical landmarks is clinically required by 

many tasks

● High anatomical variability, outliers, restricted 

feld of view, etc. render it a rather hard task

➔However, frequent co-occurrence and spatal 

correlaton of anatomical landmarks can be 

exploited!
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?
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1. Locally generate landmark hypotheses:

For each landmark, independent of its existence, generate 
multple localizaton hypotheses considering only local 
informaton

2. Select hypotheses with Conditonal Random Field (CRF):

Use spatal knowledge between landmarks to make an informed 
selecton of localizaton hypotheses or assigning “missing” for 
each landmark

→ Going from local to global context!

Basic Idea
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● Use Ensemble of Decision Tree 

Regressors to regress the “probability” of 

positon x being the true positon of the 

landmark, given a feature vector f(x)

● Use sampling mask to compute local 

intensity diferences as feature vector 

f(x)

● Repeat for each pixel x and get a pseudo 

probability map with potentally many 

local maxima (localizaton hypotheses)

1. Landmark Localizaton using Regression Tree Ensembles

Localizaton hypotheses

Sampling

mask

True positon right knee
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● Use positie samples to train a frst 
intermediate tree

● Use intermediate tree to fnd 
incorrect high responses and use 
them as negatie samples

● Iteratng over all images, a more 
refned tree is trained afer each 
sample generaton

● Final tree is added to the ensemble

1. Discriminatie Training of a Regression Tree

Positie samples: Features and 
regression values of all pixel with an 
Euclidean distance less than R to the 

landmark 

Negatie samples: Apply 
intermediate tree and select 

incorrect high responses
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2. Informed Landmark Selecton using a CRF

● Use a CRF to model the landmark positons as 

random iariables

● State space constrained to top n localizaton 

hypotheses per landmark

● Additonal “missing” state for each landmark 

representng its absence

● Diferent energy potentals describe the quality of a 

joint selecton over all landmarks

● Inference is used to fnd the best confguraton, 

solving localizaton and detecton in one step
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2. Informed Landmark Selecton using a CRF
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Landmarks as random 

variables;

state space made of 

localizaton 

hypotheses plus 

"missing"

Diferent types of 

unary and binary 

potentals 

(knowledge 

sources)

● Energyhbased formulaton to describe one 

selecton w.r.t. diferent knowledge 

sources

● Weighted sum over T potentals φ
j
(S) or 

missing energies β
j
 for selecton S:

● Use inference (exact A* search) to fnd the 

selecton with the lowest energy:
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2. Informed Landmark Selecton using a CRF
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● Energyhbased formulaton to describe one 

selecton w.r.t. diferent knowledge 

sources

● Weighted sum over T potentals φ
j
(S) or 

missing energies β
j
 for selecton S:

● Use inference (exact A* search) to fnd the 

selecton with the lowest energy:Weights?
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2. Learning Weights, Missing Energies and Topology
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● Central idea: Startng from a fully connected graph containing instances of all 

potentals from a “pool of potentals” (φ), learn weights (λ), energies (β) and 

deduce topology (λ = 0) in one novel step

● Pool may contain arbitrary potentals of 

arbitrary arity, but we limit it to unary 

localizer and binary probabilistc potentals 

using geometric features, i.e., angle, 

distance and vector

➔ Ultmate goal is to reduce complexity 

while increasing detecton and 

localizaton accuracy by automatcally 

learning important model components!
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2. Learning Weights, Missing Energies and Topology

● Max-margin approach to increase energy gap between correct and “best” 

incorrect selecton, exact A* search by Bergtholdt et al. [1] to fnd the later

● Optmizaton using stochastc gradient descent in form of the Adam 

algorithm [2] to efciently perform the optmizaton

Optmize loss 

functon
L1 regularizaton to accelerate 

potental sparsifcaton

Correct 

selecton
“Best” incorrect 

selecton

Margin to improve 

generalizaton
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Results

● 5hfold cross validaton on an inhhouse dataset of 660 Xhray 

images of the lower extremites

● Due to restricted feld of view, 2 to 6 diferent landmarks per 

image with 11.3% being altered by prostheses or pathologies

● Highly efectie detecton with 98.1% over 660 images and up 

to 6 diferent landmarks

● Correctly detected and localized (< 10mm) on aierage 92.8%, 

with landmarkhspecifc rates from 90.0% to 97.4%

● Signifcantly outperformed preiious results [3] by 

Ruppertshofen et al.

● Remoied on average 23 of 51 potentals, efectvely reducing 

the inference tme by 20.1%
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Conclusions

● Automated framework for detectng and localizing spatally 

correlated landmarks

● Startng from a pool of potentals: Efcient onehshot 

optmizaton of underlying CRF, i.e., potental selecton and 

weightng, energies for “missing”hstate and topology

● Allows applicaton to diferent datasets with litle manual 

efort

Future Work:

● Usage of diferent localizers (e.g., CNNhbased) to further improve accuracy

● Inclusion of higherhorder potentals (using, e.g., higherhorder clique reducton) 

and potentals using image informaton rather than only spatal features
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