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Image path retrieval
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Image Image
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Example Applications
e Visualize a progression of diseases (e.g., from benign to melanoma)
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e Find images of CN = Clark Nevus (Benign)

MEL = Melanoma (Cancerous)
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Skin dataset encoded as a graph

Images are encoded as nodes Given a source and target node

source target

We can find a graph geodesic
(minimal path) between them
using Dijkstra's algorithm

Edges represent dissimilarity
between images



Overview of our talk

3) How to quantitatively

1) How to encode images? _
evaluate the quality of paths?

source

2) How to encode image
dissimilarity/edge weights?



Overview of our talk

3) How to quantitatively

1) How to encode images? _
evaluate the quality of paths?

source

2) How to encode image
dissimilarity/edge weights?



112 x[112 x 128

28 X 28 X 512 TXT7x512
14x14x512

_1x1x4096 1x1x1000

@ convolution+ReLU
@ max pooling

7/ fully connected+ReLU
4[ softmax

. "
o i / -

[oF:

i 1067 ul
&7 L2 Baalh" N i

<
A



28 X 28 x 512
14x14x 512

4096  1x1x1000

@ convolution+ReLU

@ max pooling
! fully connected+ReLU

'4[' softmax




28 X 28 x 512
14x14x 512

4096 1x1x 1000

@ convolution+ReLU

@ max pooling
¢ fully connected+ReLU

'4[' softmax




Skin images as deep neural network responses




Skin images as deep neural network responses




Overview of our talk

3) How to quantitatively

1) How to encode images? _
evaluate the quality of paths?

source

2) How to encode image
dissimilarity/edge weights?



Overview of our talk

3) How to quantitatively

1) How to encode images? _
evaluate the quality of paths?

source

2) How to encode image
dissimilarity/edge weights?



Dissimilarity between pairs of images

D(:E(i) : ) = the cosine distance
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Dissimilarity encoded as graph edges
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Equidistant edge weights




Image dissimilarity as edge weights

source

Edges represent the dissimilarity between two images



Problem: very short paths
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3 <1+2.1

In a complete graph, the direct edge will almost always be chosen
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Potential problem: how many edges to prune?
Can lead to disconnected graphs with no path
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Problem: very short paths
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Solution:
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Computes dissimilarity between images

clinical | clinical
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(as clinical images can contain background artefacts)
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Evaluate Path Qua“ty How to quantify different paths?

Images have class labels associated with them

Transition cost = a path should have a smooth transition of class labels
Images have a 7-point score, where higher values indicate melanoma
Progression cost = the 7-point scores in a path should consistently
increase/decrease between the source and target
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Results (quantitative)
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Image type Exponential edge Graph Transition cost | Num. of path nodes
weights connectivity Mean (std. dev.) Mean (std. dev.)
derm no complete 0.76 (0.42) 2.02 (0.13)
derm no 30 0.64 (0.34) 3.59 (0.85)
derm yes complete 0.56 (0.26) 8.11 (2.87)
clinic yes 30 0.65 (0.18) 10.64 (5.08)
derm/clinic yes K10 0.45 (0.24) 7.90 (3.27)
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weights connectivity Mean (std. dev.) Meani(std-devi)
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A complete graph without exponential edge weights has a very short path
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Image type Exponential edge Graph Transition cost | Num. of path nodes
weights connectivity Mean (std. dev.) Meani(std-devi)
derm no complete 0.76 (0.42) 2.02 (0.13)
derm no 30 0.64 (0.34) 3.59 (0.85)
derm yes complete 0.56 (0.26) 8.11 (2.87)
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Restricting graph connectivity results in slightly longer paths
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Image type Exponential edge Graph Transition cost | Num. of path nodes
weights connectivity Mean (std. dev.) Meani(std-devi)
derm no complete 0.76 (0.42) 2.02 (0.13)
derm no 30 0.64 (0.34) 3.59 (0.85)
derm yes complete 0.56 (0.26) 8.11 (2.87)
clinic yes 30 0.65 (0.18) 10.64 (5.08)
derm/clinic yes K10 0.45 (0.24) 7.90 (3.27)

Exponential edge weights yields longer paths even with a complete graph
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Image type Exponential edge Graph Transition cost | Num. of path nodes
weights connectivity Mean (std. dev.) Mean (std. dev.)
derm no complete 0.76 (0.42) 2.02 (0.13)
derm no 30 0.64 (0.34) 3.59 (0.85)
derm yes complete 0.56 (0.26) 8.11 (2.87)
clinic yes 30 0.65 (0.18) 10.64 (5.08)
derm/clinic yes K10 0.45 (0.24) 7.90 (3.27)

Clinical images score poorly on the transition costs
(as expected since clinical images contain more background clutter than dermoscopic images)
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Image type Exponential edge Graph Transition cost | Num. of path nodes
weights connectivity Mean (std. dev.) Meani(std-devi)
derm no complete 0.76 (0.42) 2.02 (0.13)
derm no 30 0.64 (0.34) 3.59 (0.85)
derm yes complete 0.56 (0.26) 8.11 (2.87)
clinic yes 30 0.65 (0.18) 10.64 (5.08)
derm/clinic yes K10 0.45 (0.24) 7.90 (3.27)

Combined dermoscopic and clinical images have a low transition cost



Summary -.

Graph geodesics (minimal path) to visualize skin lesions

Exponential multi-modal edge weights based on
responses from a pretrained neural network

Proposed metrics to quantify the path quality

) 2.1 =194
Progression cost
Transition cost ' _
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Applying machine learning to skin lesion diagnosis

Image Retrieval K-Nearest Neighbours

- . SR Ly
. sal cell _carcinoma

Diagnosis can be inferred by
inspecting the appearance of
similarly diseased images.



Results (quantitative) . { same labels G
- I, otherwise a
a (21 =44l O%O Lower is better Lower is better .un
3 3

Image type Exponential Graph Transition cost Progress cost | Num. Nodes
edge weights | connectivity Mean (std. dev.) Meami(std dev) Meani(std.-dev:)
derm no complete 0.76 (0.42) 0.10 (0.19) 2.02 (0.13)
derm no 30 0.64 (0.34) 0.23 (0.26) 3.59 (0.85)
derm yes complete 0.56 (0.26) 0.37 (0.20) 8.11 (2.87)
derm yes K10 0.56 (0.26) 0.37 (0.20) 8.12 (2.87)
clinic yes 30 0.65 (0.18) 0.46 (0.20) 10.64 (5.08)
derm/clinic yes 30 0.45 (0.24) 0.34 (0.19) 7.90 (3.27)
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Synthetic Examples




