
Graph Geodesics to Find Progressively 
Similar Skin Lesions

Jeremy Kawahara, Kathleen Moriarty, Ghassan Hamarneh

Presented by Kathleen Moriarty

1



SDatabase of skin lesion images

2



Image retrieval

3

Query 
Image

Query
Image



Image retrieval
Query 
Image

Query
Image

4

Most
Similar

Most
Similar

MELCN

CN = Clark Nevus (Benign)

MEL = Melanoma (Cancerous)

Find similar images from database of known skin images
Similar images can infer a diagnosis



Image retrieval
Query 
Image

Query
Image

5

Most
Similar

Most
Similar

MEL MELCNCN

CN = Clark Nevus (Benign)

MEL = Melanoma (Cancerous)

Find similar images from database of known skin images
Similar images can infer a diagnosis ✓✓



Image path retrieval

6

Most
Similar

Most
Similar

MEL MELCNCN

CN = Clark Nevus (Benign)

MEL = Melanoma (Cancerous)

Query 
Image

Query
Image



Image path retrieval

7

Most
Similar

Most
Similar

MEL MELCNCN

CN = Clark Nevus (Benign)

MEL = Melanoma (Cancerous)

Source
Image

Query
Image



Image path retrieval

8

Most
Similar

Most
Similar

MEL MELCNCN

CN = Clark Nevus (Benign)

MEL = Melanoma (Cancerous)

Source
Image

Target
Image



Image path retrieval

9

CN = Clark Nevus (Benign)

MEL = Melanoma (Cancerous)

Source
Image

Target
Image



Image path retrieval

10

CN = Clark Nevus (Benign)

MEL = Melanoma (Cancerous)

Retrieved path of images 

Source
Image

Target
Image



Image path retrieval
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Image path retrieval
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Example Applications
● Visualize a progression of diseases (e.g., from benign to melanoma)

● Find images of borderline cases



Skin dataset encoded as a graph
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Skin dataset encoded as a graph

Images are encoded as nodes

Edges represent dissimilarity 
between images
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Skin dataset encoded as a graph

Images are encoded as nodes

Edges represent dissimilarity 
between images

source target

Given a source and target node

We can find a graph geodesic 
(minimal path) between them 

using Dijkstra's algorithm
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Overview of our talk

source target

1) How to encode images? 3) How to quantitatively 
evaluate the quality of paths?

2) How to encode image 
dissimilarity/edge weights?  

4) Results
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VGG 16 Pretrained over ImageNet

https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
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Skin images as deep neural network responses

https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

Responses represent 
an image
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Skin images as deep neural network responses

Left-right fip

https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

Responses represent 
an image
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Skin images as deep neural network responses
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Skin images as deep neural network responses

Average responses to 
form a single vector that 
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Dissimilarity between pairs of images
= the cosine distance
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Dissimilarity between pairs of images

Magenta indicates the 
dissimilarity between images
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Dissimilarity between pairs of images

High dissimilarity between 
visually dissimilar images
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Dissimilarity encoded as graph edges
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Dissimilarity encoded as graph edges
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Equidistant edge weights
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targetsource

Image dissimilarity as edge weights

Edges represent the dissimilarity between two images
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targetsource

Problem: very short paths

3 < 1+2.1
In a complete graph, the direct edge will almost always be chosen
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targetsource

Common solution: Prune edges
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targetsource

Common solution: Prune edges

Potential problem: how many edges to prune?
Can lead to disconnected graphs with no path
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targetsource

Problem: very short paths

3 < 1+2.1
In a complete graph, the direct edge will almost always be chosen
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targetsource

Solution: exponential dissimilarity

Problem: very short paths
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dermoscopic dermoscopic

Multi-Modal Edge Weights

Computes dissimilarity between images
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So far, we have only looked at the 
dermoscopic images (captured by a dermatoscope)



dermoscopic dermoscopic

clinicalclinical

Multi-Modal Edge Weights

Computes dissimilarity between images

40

So far, we have only looked at the 
dermoscopic images (captured by a dermatoscope)

Each lesion also has a clinical image
(can contain background)



dermoscopic dermoscopic
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Multi-Modal Edge Weights

Computes dissimilarity between images
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So far, we have only looked at the 
dermoscopic images (captured by a dermatoscope)

Each lesion also has a clinical image
(can contain background)



dermoscopic dermoscopic

clinicalclinical = 0.8 gives heavier weight to 
dermoscopic images

Multi-Modal Edge Weights

Computes dissimilarity between images

42
(as clinical images can contain background artefacts)
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Evaluate Path Quality How to quantify different paths?
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Evaluate Path Quality How to quantify different paths?
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Evaluate Path Quality How to quantify different paths?

Images have class labels associated with them
Transition cost = a path should have a smooth transition of class labels
Images have a 7-point score, where higher values indicate melanoma
Progression cost = the 7-point scores in a path should consistently 
increase/decrease between the source and target 49
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Image type Exponential edge 
weights

Graph 
connectivity

Transition cost
Mean (std. dev.)

Num. of path nodes 
Mean (std. dev.)

derm no complete 0.76 (0.42) 2.02 (0.13)

derm no 30 0.64 (0.34) 3.59 (0.85)

derm yes complete 0.56 (0.26) 8.11 (2.87)

clinic yes 30 0.65 (0.18) 10.64 (5.08)

derm/clinic yes 30 0.45 (0.24) 7.90 (3.27)

Results (quantitative)
Lower is better
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Image type Exponential edge 
weights

Graph 
connectivity

Transition cost
Mean (std. dev.)

Num. of path nodes 
Mean (std. dev.)

derm no complete 0.76 (0.42) 2.02 (0.13)

derm no 30 0.64 (0.34) 3.59 (0.85)

derm yes complete 0.56 (0.26) 8.11 (2.87)

clinic yes 30 0.65 (0.18) 10.64 (5.08)

derm/clinic yes 30 0.45 (0.24) 7.90 (3.27)

Results (quantitative)
Lower is better

A complete graph without exponential edge weights has a very short path
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Image type Exponential edge 
weights

Graph 
connectivity

Transition cost
Mean (std. dev.)

Num. of path nodes 
Mean (std. dev.)

derm no complete 0.76 (0.42) 2.02 (0.13)

derm no 30 0.64 (0.34) 3.59 (0.85)

derm yes complete 0.56 (0.26) 8.11 (2.87)

clinic yes 30 0.65 (0.18) 10.64 (5.08)

derm/clinic yes 30 0.45 (0.24) 7.90 (3.27)

Results (quantitative)
Lower is better

Restricting graph connectivity results in slightly longer paths
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Image type Exponential edge 
weights

Graph 
connectivity

Transition cost
Mean (std. dev.)

Num. of path nodes 
Mean (std. dev.)

derm no complete 0.76 (0.42) 2.02 (0.13)

derm no 30 0.64 (0.34) 3.59 (0.85)

derm yes complete 0.56 (0.26) 8.11 (2.87)

clinic yes 30 0.65 (0.18) 10.64 (5.08)

derm/clinic yes 30 0.45 (0.24) 7.90 (3.27)

Results (quantitative)
Lower is better

Exponential edge weights yields longer paths even with a complete graph
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Image type Exponential edge 
weights

Graph 
connectivity

Transition cost
Mean (std. dev.)

Num. of path nodes 
Mean (std. dev.)

derm no complete 0.76 (0.42) 2.02 (0.13)

derm no 30 0.64 (0.34) 3.59 (0.85)

derm yes complete 0.56 (0.26) 8.11 (2.87)

clinic yes 30 0.65 (0.18) 10.64 (5.08)

derm/clinic yes 30 0.45 (0.24) 7.90 (3.27)

Results (quantitative)
Lower is better

Clinical images score poorly on the transition costs 
(as expected since clinical images contain more background clutter than dermoscopic images) 

67



Image type Exponential edge 
weights

Graph 
connectivity

Transition cost
Mean (std. dev.)

Num. of path nodes 
Mean (std. dev.)

derm no complete 0.76 (0.42) 2.02 (0.13)

derm no 30 0.64 (0.34) 3.59 (0.85)

derm yes complete 0.56 (0.26) 8.11 (2.87)

clinic yes 30 0.65 (0.18) 10.64 (5.08)

derm/clinic yes 30 0.45 (0.24) 7.90 (3.27)

Results (quantitative)
Lower is better

Combined dermoscopic and clinical images have a low transition cost
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Summary

Graph geodesics (minimal path) to visualize skin lesions

Exponential multi-modal edge weights based on 
responses from a pretrained neural network

Proposed metrics to quantify the path quality
Progression cost
Transition cost

69Kathleen: kmoriart@sfu.ca
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Thank you!



Non-Cancerous

Cancerous
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Image Retrieval K-Nearest Neighbours

Diagnosis can be inferred by 
inspecting the appearance of 
similarly diseased images.

Applying machine learning to skin lesion diagnosis
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Image type Exponential 
edge weights

Graph 
connectivity

Transition cost
Mean (std. dev.)

Progress cost
Mean (std. dev.)

Num. Nodes 
Mean (std. dev.)

derm no complete 0.76 (0.42) 0.10 (0.19) 2.02 (0.13)

derm no 30 0.64 (0.34) 0.23 (0.26) 3.59 (0.85)

derm yes complete 0.56 (0.26) 0.37 (0.20) 8.11 (2.87)

derm yes 30 0.56 (0.26) 0.37 (0.20) 8.12 (2.87)

clinic yes 30 0.65 (0.18) 0.46 (0.20) 10.64 (5.08)

derm/clinic yes 30 0.45 (0.24) 0.34 (0.19) 7.90 (3.27)

Results (quantitative)
Lower is betterLower is better
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Synthetic Examples
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