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Parkinson’s disease
Background
• In 2015, PD affected 6.2 million 

people, causing 117,400 deaths 
globally. GDB, Lancet, Oct 2016.

• 2017 marks 200 years since the 
publication of James Parkinson’s 
“An essay on the shaking palsy”.

• Common motor symptoms include 
tremors, rigidity & bradykinesia.

Neuroimaging findings
• Brain morphology change in PD. 

Jubault et al. 2009, Ibarretxe-Bilbao et al. 2011.

• Volume loss in subcortical 
structures in PD. Burton et al 2004, Junque
et al. 2005.

• Cortical matter loss in PD. Jubault et 
al. 2011, Zerei et al. 2013.

PPMI
• PD – 115M/74F, Age: 68 (4.7) yrs.
• NC – 75M/62F, Age: 63.8 (7.4) yrs.
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Subcortical segmentation
• Multi-template registration 

based segmentation

• FreeSurfer + Large 
deformation diffeomorphic 
metric mapping 
(FS+LDDMM).

Image	Source	:	Khan	et	al	2008.



SurfDisp Computation
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*Garg, A., Appel-Cresswell, S., Popuri, K., McKeown, M.J., Beg, M.F.: 
Morphological alterations in the caudate, putamen, pallidum, and thalamus in 
Parkinson’s disease. Frontiers in Neuroscience 9(March), 1{14 (2015)



Network filtration
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Classical Network Features

• Nodal degree

• Clustering Coefficient

• Local efficiency
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Why persistence homology ?

• Classical network feature is based on the simplified assumption 
of a pairwise interaction.

• Human brain interacts between many regions.

• Persistence Homology enables us to model the polyadic(many-
to-many) interactions between nodes of a network.
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Persistence Homology Features
Persistent homology

Vietoris-Rips Complex

Persistence barcodesPersistence DiagramsPersistence Landscapes

(A)

(B)
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Bubenik, Peter. "Statistical topological data analysis 
using persistence landscapes." The Journal of Machine 
Learning Research 16.1 (2015): 77-102.
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Experiments

• Statistical group difference:

– Permutation Test (significance at p<0.05)

• Classification:

– Support Vector Machine Classifier
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Results : Parkinson’s disease
1.Statistical group difference:

2.Classification:
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ROI Feature Accuracy Sensitivity Specificity F1

Left Pallidum Persistence diagram 74.91% 0.883 0.145 0.847

Nodal degree 59.11% 0.686 0.331 0.675

Right Pallidum Persistence diagram 75.01% 0.886 0.141 0.852

Local efficiency 52.52% 0.530 0.514 0.619

Feature Caudate
L                 R

Putamen
L                 R

Persistence Landscape 0 0 0 0

Local efficiency 0.03 0.333 0.0064 0.482

Clustering Coefficient 0.8 0.028 0.121 0.261

Nodal degree 0.231 0.003 0.049 0.5829



Conclusion

• Persistence homology features show superior 
performance to network features in differentiating between 
disease and control brain.

• Polyadic interactions between brain regions are important 
differentiators for PD and show a potential for clinical 
application
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Thank You !
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Why persistence homology ?
• Complex network analysis is based on the simplified assumption 

of a pairwise interaction.

• Human brain interacts between many regions.

• Model the polyadic (many-to-many) interaction between nodes 
of a network.

• Simplicial Homology enables modeling of such polyadic 
interactions.
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Surface displacement shape feature

• Mref : average template

• Mtarg : target surface

• dnorm : surface displacement

• Projected distance along the 
normal vector on the reference 
surface.

18

Injected  
template 
surface



Why Study Shape Topology ?
• Subcortical structures closely packed in white matter.

• Neurodegeneration related deformation of one surface 
(e.g. medial) of a structure potentially influences the 
other surfaces (e.g. lateral, inferior).

• Thus: shape change is not independent.

• Study interaction of shape features across regions in the 
structure : Shape Topology.
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What is shape ?
• Shape can be understood as the geometrical information of a 

structure that remains after the removal of position, orientation and 
scale effects. (Stegmann et al. 2002)

• Shape Features
– Spectral approach : Laplacian Eigen-functions

– Set of basis functions : Spherical Harmonics

– Medial representation : Radial Distance

– Deformetrics : Surface currents

– Ng et al., Book chapter LNCVB 14 , 2014
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Analysis of PH Features
Persistence barcodesPersistence Diagrams (PDia)Persistence Landscapes (PLs)

Persistence 
Landscapes Kernel

Persistence Scale 
Space Kernel

Features ?
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Experiments

• Statistical group difference:

– Permutation statistics (significance at p<0.05)

• Classification:

– Kernel Support Vector Machine classifier.

– Repeated Hold out Stratified Training (RHST).
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Betti Numbers RBF kernel

Persistence Landscapes PL kernel

Persistence Diagrams PSSK kernel

Network Features RBF kernel

PL: Persistence Landscapes Kernel, PSSK: Persistence Scale Space Kernel, RBF: Radial basis function kernel



Demographics
• PPMI

– PD – 115M/74F, Age: 68 (4.7) yrs.
– NC – 75M/62F, Age: 63.8 (7.4) yrs.
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Parkinson’s disease

Background
• In 2015, PD affected 6.2 million 

people, causing 117,400 deaths 
globally. GDB, Lancet, Oct 2016.

• 2017 marks 200 years since the 
publication of James Parkinson’s 
“An essay on the shaking palsy”.

• Common motor symptoms include 
tremors, rigidity & bradykinesia.

Neuroimaging findings
• Brain morphology change in PD. 

Jubault et al. 2009, Ibarretxe-Bilbao et al. 2011.

• Volume loss in subcortical 
structures in PD. Burton et al 2004, Junque
et al. 2005.

• Cortical matter loss in PD. Jubault et 
al. 2011, Zerei et al. 2013.
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Why ?
• Morphometry studies on neurodegenrative disorders 

have shown local and global volume loss in the 
brain.

• Brain volume loss leads to asymmetric deformation 
of the brain surface.

• Geometrical arrangement of brain regions changes 
with shrinkage.

• Potential signature to diagnose brain abnormalities.
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Conclusion

• Geometry Networks have a potential to capture the change in brain
geometrical arrangement.

• Persistence homology timeline features show superior performance to
complex network features in differentiating between disease and
control brain.

• Polyadic (many-to-many) interactions between brain regions are
important differentiators between disease and control brains.
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• First work to study the brain geometry networks.

• A method to model the polyadic interactions in brain 
geometry networks.

• Potential utility in clinical application.

Topology of Brain Geometry
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Subcortical Segmentation
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Freesurfer initiated Large 
Deformation Diffeomorphic 
Metric Mapping (FSLDDMM) 
segmentation with adult 
templates.



Subcortical segmentation
• Multi-template registration 

based segmentation

• FreeSurfer + Large 
deformation diffeomorphic 
metric mapping 
(FS+LDDMM).

Image	Source	:	Khan	et	al	2008.


