An Empirical Study of Continuous Connectivity Degree Sequence Equivalents

MICCAI 2016

Daniel Moyer, Boris Gutman, Neda Jahanshad, Joshua Faskowitz, and Paul Thompson

October 17, 2016

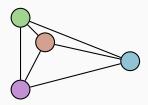
Imaging Genetics Center/Information Science Institute University of Southern California

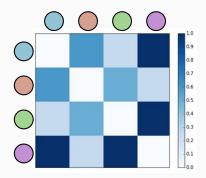
Advisors: Paul Thompson (IGC) and Greg Ver Steeg (ISI)

Spoiler Alert

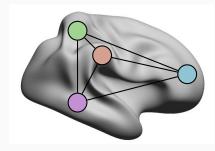
The results of this paper have a different focus from the main conference talk, but since they're based on the same model, the first half of the talks are very similar.

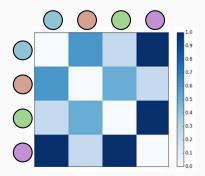
Network model



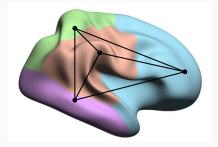


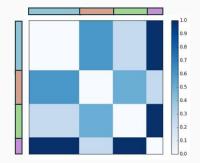
Brain Network model





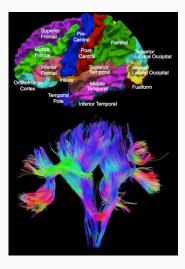
Regional Connectivity model





Standard Connectomics Pipeline:1. Parcellate Cortex

Images from IGC-INI for the Freesurfer documentation (top), and Human



Standard Connectomics Pipeline:1. Parcellate Cortex2. Fit tracks

Images from IGC-INI for the Freesurfer documentation (top), and Human

$$Adj^{n} = \begin{bmatrix} Adj_{11}^{n} & Adj_{12}^{n} & \cdots \\ Adj_{21}^{n} & Adj_{22}^{n} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
$$Adj_{ij}^{n} = \underbrace{|\{(x, y) : x \in E_{i}, y \in E_{j}\}|}_{\text{No. of tracks from i to j}}$$

Standard Connectomics Pipeline:

- 1. Parcellate Cortex
- 2. Fit tracks

3. Construct networks

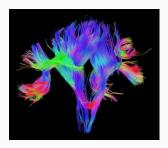
Images from IGC-INI for the Freesurfer documentation (top), and Human

- Clustering
 Coefficients
- Path length and centrality
- Degree distributions

Standard Connectomics Pipeline:

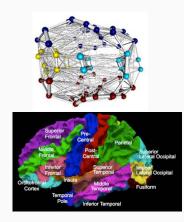
- 1. Parcellate Cortex
- 2. Fit tracks
- 3. Construct networks
- 4. Measure network statistics

Images from IGC-INI for the Freesurfer documentation (top), and Human



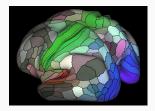
Three important problems:1. Tracks have noise.

Some Known Problems



Three important problems:

- 1. Tracks have noise.
- 2. Nodes are atomic; but brain regions are not.



Three important problems:

- 1. Tracks have noise.
- 2. Nodes are atomic; but brain regions are not.
- 3. There is no agreed upon standard parcellation.

Choice of Parcellation Matters!

- Clustering Coefficients [Z⁺10, L⁺16]
- Path length/centrality [Z⁺10, RG⁺12, L⁺16]
- Degree distributions [Z+10, RG+12, L+16]

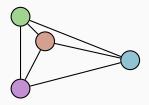
Choice of Parcellation Matters!

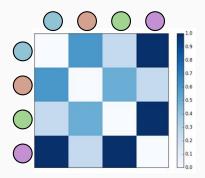
- Clustering Coefficients [Z⁺10, L⁺16]
- Path length/centrality [Z⁺10, RG⁺12, L⁺16]
- Degree distributions [Z+10, RG+12, L+16]

There may not even be a best parcellation [dRVdH13].

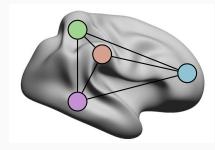
So what can we do?

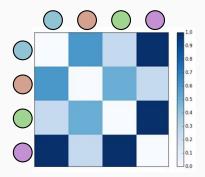
Standard network Model



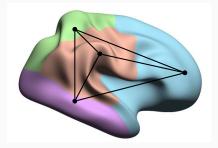


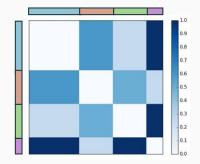
Brain Network Model



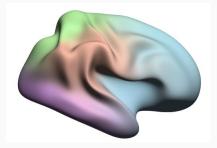


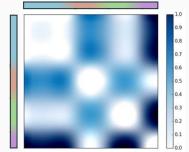
Regional Connectivity Model



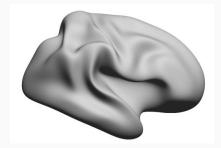


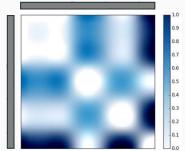
Relaxed Regional Connectivity Model





Coordinate-based Connectivity Model?





[Poisson] Point Processes:

- Random process with point pattern realizations.
- Described by an intensity function λ : Domain $\rightarrow \mathbb{R}^+$, the asymptotic rate of events (point obs.).
- [Poisson] Events occur independently, and for any region $R \subset$ Domain, $P(\text{obs}, N \text{ events}) = Poisson(\int_{-1}^{1} \chi(x) dx)$

 $P(\text{obs. } N \text{ events}) = Poisson(\int_R \lambda(x)dx).$

In our context:

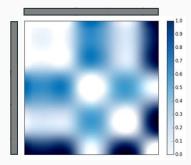
- Events are obs. track endpoint pairs.
- Domain = $\Omega \times \Omega$, where $\Omega \sim S^2 \cup S^2$ is the cortical surface.

In our context:

- Events are obs. track endpoint pairs.
- Domain = $\Omega \times \Omega$, where $\Omega \sim S^2 \cup S^2$ is the cortical surface.
- We assume that pairs of track endpoints appear ind. with some asymptotic rate λ over the connectivity domain $\Omega \times \Omega$.

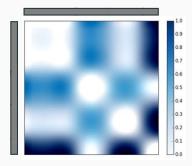
Continuous Connectivity

$$\lambda: \Omega \times \Omega \to \mathbb{R}^+$$



Continuous Connectivity

$$\lambda: \Omega \times \Omega \to \mathbb{R}^+$$



Choice: We will approximate λ by Kernel Density Estimation (KDE).

Procedure:

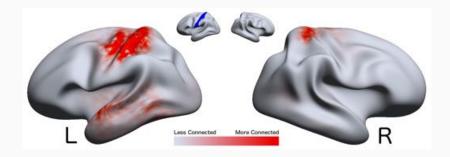
- 1. Recover the cortical surfaces (each hemisphere $\sim S^2$)
- 2. Register the surfaces.
- 3. Define a kernel K(p, x) on S^2 .
- 4. Convolve each set of endpoints with the product kernel $\kappa = K(p, x)K(q, y)$ on $S^2 \times S^2$.
- 5. Sum the convolved kernels to form $\hat{\lambda}$.

The spherical heat kernel (expressed in truncated spherical harmonic form) [Chu06], turned into a product kernel:

$$f(p, x, \sigma) = \sum_{h=0}^{H} \frac{2h+1}{4\pi} \exp\{-\sigma(h^2+h)\} P_h^0(p \cdot x)$$

$$\mathcal{K}_{\sigma}(p,x) = \begin{cases} f(p,x,\sigma) & \text{if } p,x \text{ are on same hemi.} \\ 0 & \text{otherwise} \end{cases}$$

 $\kappa_{\sigma}((p,q),(x,y)) = K_{\sigma}(p,x)K_{\sigma}(q,y)$ kernel for domain: $\Omega \times \Omega$



A marginal connectivity $M(y) = \int_{E_i} \lambda(x, y) dx$ to the Left post-central gyrus for one subject. Red denotes higher connectivity regions with the blue region.

Marginal connectivity

For any $E \subset \Omega$, define the marginal connectivity as

$$M_E(x) = \int_E \lambda(x, y) dy$$

It can be shown that if $\lambda(x, y)$ is continuous, then $M_E(x)$ is also continuous.

Continuous Conn.

Discrete Networks, $V = \{v_i\}_i^K$

 $\lambda:\Omega imes\Omega o\mathbb{R}^+$

 $M(x) = M_{\Omega}(x) = \int_{\Omega} \lambda(x, y) dy$

Marginal Conn.

Diagrata Dagraa

Discrete Degree

$$deg(x) = \sum_{y \in V} e(x, y)$$

 $e: V \times V \to \mathbb{R}^+$

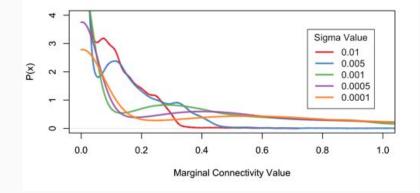
Choosing σ

$$\kappa((p,q)|D) = \sum_{(x_i,y_i)\in D} K_{\sigma}(x_i,p)K_{\sigma}(y_i,q)$$

$$= \sum_{h}^{H} \sum_{k}^{H} \left[\underbrace{\left(\frac{2h+1}{4\pi}\right) \left(\frac{2k+1}{4\pi}\right) \exp\{-\sigma(h^2+h+k^2+k)\}}_{\text{Independent of } D, \text{ evaluated every iteration}} \times \underbrace{\sum_{(x_i,y_i)\in D} P_h^0(x_i \cdot p)P_k^0(y_i \cdot q)}_{\text{Independent of } \sigma, \text{ evaluated once}} \right]$$

Naive evaluation takes O(n|D|) time for *n* choices of σ . This formulation runs in O(n + |D|).

Degree Equivalents



Estimated density of sampled marginal connectivity functions.

Consistency and Asymptotic Normality

Assume the true connectivity function λ is continuous, and let $\hat{\lambda}$ be function recovered by the previously described KDE.

Then $\hat{\lambda}$ is a special case of the class of manifold KDE described by Henry and Rodriguez [HR09]. The error function

$$\textit{Err}(\lambda, \hat{\lambda}) = |\lambda - \hat{\lambda}|$$

converges almost surely to zero everywhere (it is **consistent**), and obeys a central limit theorem (asymptotically a vanishing normal distribution).

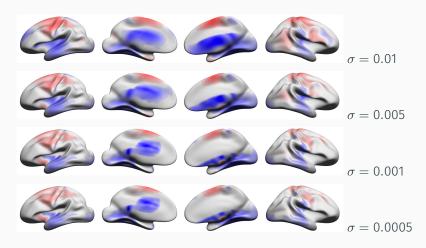
Moreover, the integral of this error is also asymptotically normal.

Procedure:

- 1. Recover the cortical surfaces (each hemisphere $\sim S^2$)
- 2. Register the surfaces.
- 3. Recover tractographies using both DTI and CSD local models.
- 4. Estimate $\hat{\lambda}_{DTI}$ and $\hat{\lambda}_{CSD}$.
- 5. Test point-wise differences between $\hat{\lambda}_{DTI}$ and $\hat{\lambda}_{CSD}$ using a *t*-test.

Degree Equivalents

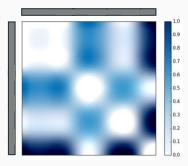
Red is DTI, Blue is CSD.



Other Applications

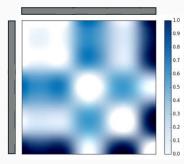
Continuum to Discrete

 $\lambda: \Omega \times \Omega \to \mathbb{R}^+$

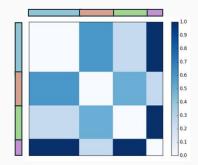


Continuum to Discrete

$$\lambda: \Omega \times \Omega \to \mathbb{R}^+$$



$$\mathcal{G}: \{E_k\}_{k=1}^K \times \{E_k\}_{k=1}^K \to \mathbb{R}^+$$



Continuum to Discrete

$$\lambda: \Omega \times \Omega \to \mathbb{R}^+ \qquad \qquad \mathcal{G}: \{E_k\}_{k=1}^n \times \{E_k\}_{k=1}^n \to \mathbb{R}^+$$

Def:
$$\mathcal{G}(E_i, E_j) = \iint_{E_i \times E_j} \lambda(x, y) dx dy$$

= $\mathbb{E}[\text{No. of obs. tracks from } E_i \text{ to } E_j]$

Criteria for choosing a parcellation:

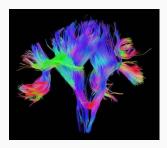
$$\ell_2(P) = \sum_{(E_i, E_j) \in P} \iint_{E_i \times E_j} \left[Adj_{ij} - \lambda(x, y) \right]^2 dxdy$$

$$\ell_{like}(P) = \sum_{(E_i, E_j) \in P} \log \mathcal{L}(Adj_{ij})$$

 $AIC(P) = \ell_{like} - \# \text{ of parameters}$ = $\ell_{like} - |P|^2$

Preliminary results:

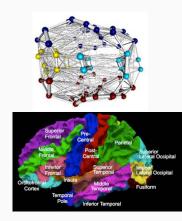
Туре	DK	Destrieux	DKT31
$\ell_2(P)$	1.0517×10^{-5}	1.0257×10^{-5}	1.1262×10^{-5}
$\ell_{like}(P)$	85256.0	357292.9	88434.9
AIC(P)	175068.1	736341.9	185234.3



Three important problems:

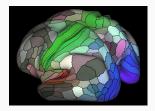
- 1. Tracks have noise.
- 2. Nodes are atomic; but brain regions are not.
- 3. There is no agreed upon standard parcellation.

Some Known Problems



Three important problems:

- 1. Tracks have noise.
- 2. Nodes are atomic; but brain regions are not.
- 3. There is no agreed upon standard parcellation.



Three important problems:

- 1. Tracks have noise.
- 2. Nodes are atomic; but brain regions are not.
- 3. There is no agreed upon standard parcellation.

References

- Moo K Chung, *Heat kernel smoothing on unit sphere*, Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, IEEE, 2006, pp. 992–995.
- Marcel A de Reus and Martijn P Van den Heuvel, The parcellation-based connectome, NeuroImage 80 (2013), 397–404.
- Guillermo Henry and Daniela Rodriguez, *Kernel density* estimation on riemannian manifolds: Asymptotic results, Journal of Mathematical Imaging and Vision **34** (2009), no. 3, 235–239.
- Anton Lord et al., *Brain parcellation choice affects disease-related topology differences*, Psychiatry Research: Neuroimaging **249** (2016), 12–19.
- Rafael Romero-Garcia et al., Effects of network resolution on topological properties of human neocortex, Neuroimage 59 (2012), no. 4, 3522–3532.
- Andrew Zalesky et al., Whole-brain anatomical networks: does

Thank you!

Questions?

Thank You!

Questions?