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Unfortunate Timing

Spoiler Alert

The results of this paper have a different focus from the main

conference talk, but since they're based on the same model, the first
half of the talks are very similar.
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Standard Connectomics
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Standard Connectomics
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Standard Connectomics

Standard Connectomics Pipeline:

1. Parcellate Cortex

2. Fit tracks
* Clustering 3. Construct networks
Coefficients
- Path length and
ce I’]tra l|ty Images from IGC-INI for the Freesurfer documentation (top), and Human

Connectome Project (bottom)

- Degree distributions






Some Known Problems

Three important problems:

1. Tracks have noise.
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Some Known Problems

Three important problems:

1. Tracks have noise.

2. Nodes are atomic; but brain
regions are not.

3. There is no agreed upon
standard parcellation.



Choice of Parcellation Problems

Choice of Parcellation Matters!
- Clustering Coefficients [Z+10, L*16]

- Path length/centrality [Z10, RG*12, LT16]
- Degree distributions [Zt10, RG*12, L*16]



Choice of Parcellation Problems

Choice of Parcellation Matters!

- Clustering Coefficients [Z+10, L*16]
- Path length/centrality [Z10, RG*12, LT16]
- Degree distributions [Zt10, RG*12, L*16]

There may not even be a best parcellation [dRVdH13].



So what can we do?



Continuum Graphs

Standard network Model
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Continuum Graphs

Relaxed Regional Connectivity Model
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Continuum Graphs

Coordinate-based Connectivity Model?
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Point Processes

[Poisson] Point Processes:

- Random process with point pattern realizations.

- Described by an intensity function A : Domain — R,
the asymptotic rate of events (point obs.).

- [Poisson] Events occur independently, and for any
region R ¢ Domain,
P(obs. N events) = Poisson( [, A(x)dX).



Point Process Connectomics

In our context:

- Events are obs. track endpoint pairs.

- Domain = Q x Q, where Q ~ S? U S? is the cortical
surface.



Point Process Connectomics

In our context:

- Events are obs. track endpoint pairs.
- Domain = Q x Q, where Q ~ S? U S% is the cortical
surface.

- We assume that pairs of track endpoints appear ind.
with some asymptotic rate A over the connectivity

domain Q x Q.



Continuous Connectivity

A:OQxQ—>RT
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Continuous Connectivity

A:OQxQ—>RT

*  Choice: We will approximate
« A DbyKernel Density
¥ Estimation (KDE).



Procedure

Procedure:

1.
2.
3.
4.

Recover the cortical surfaces (each hemisphere ~ S?)
Register the surfaces.
Define a kernel K(p,x) on S2.

Convolve each set of endpoints with the product
kernel x = K(p, x)K(qg,y) on S% x S2.

Sum the convolved kernels to form .

i



Recovery of the Intensity Function

The spherical heat kernel (expressed in truncated spherical
harmonic form) [Chu06], turned into a product kernel:

A oh+1

_ 2 0

flp, ) = 3 == exp{=oli? + (P

Ko (pox) = { f(p,g, o) ifp,xareon sgme hemi.
otherwise

ko ((Py ), (X, V) = Ko (P, X)K(q,y) kernel for domain: Q x Q



Pretty Pictures

A marginal connectivity M(y) = fE’ A(X, y)dx to the Left post-central
gyrus for one subject. Red denotes higher connectivity regions with
the blue region.



Degree Equivalents

Marginal connectivity
For any E C Q, define the marginal connectivity as

Me(x) = /E A, Y)dy

It can be shown that if A(x,y) is continuous, then Mg(x) is also
continuous.
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Degree Equivalents

Continuous Conn. Discrete Networks, V = {v;}¥
A:QxQ— R e:VxV—R"F
Marginal Conn. Discrete Degree
M(x) = Mq(x) = /Q A(x, y)dy deg(x) = 2; e(x,y)
ye



K((p,Q)ID) = > Ko(xi, P)Ko(¥ir )

(XH%)GD

:zh:; [(2*’“) (2’2;1) exp{—c(h’ + h+ K+ k)}

Independent of D, evaluated every iteration

< 3 A pR-a) |

(xi.yi)€D

Independent of o, evaluated once

Naive evaluation takes O(n|D|) time for n choices of o. This
formulation runs in O(n + |D|).



Degree Equivalents
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Estimated density of sampled marginal connectivity functions.



Degree Equivalents

Consistency and Asymptotic Normality

Assume the true connectivity function X is continuous, and let \ be
function recovered by the previously described KDE.

Then X is a special case of the class of manifold KDE described by
Henry and Rodriguez [HR09]. The error function
Err(A, A) = |A — )|

converges almost surely to zero everywhere (it is consistent), and
obeys a central limit theorem (asymptotically a vanishing normal
distribution).

Moreover, the integral of this error is also asymptotically normal.



DTI vs CSD

Procedure:

1. Recover the cortical surfaces (each hemisphere ~ S?)
2. Register the surfaces.

3. Recover tractographies using both DTl and CSD local
models.

4. Estimate }\\DTI and S\CSD-

5. Test point-wise differences between Apr; and Acsp
using a t—test.
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Red is DTI, Blue is CSD.
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Other Applications




Continuum to Discrete

A xQ—>RT
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Continuum to Discrete

AQxQ—RT G {ER M < {Ex}f_, = RT

21



Continuum to Discrete

G {Erthorx{Er}imy — RY

Def: G(E,,E}) = / / A, y)dxdy
E,‘XEI'

= [E[No. of obs. tracks from E; to E}]
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Comparison of Parcellation Sets

Criteria for choosing a parcellation:

Z //E [Adji; — y)]2 dxdy

(EE)eP xEj

lire(P) = ) log L(Adjy)

(Ei,Ej)eP

AIC(P) = £jjre — # of parameters
= like — |P|?
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Preliminary results:

Type DK Destrieux DKT31
6(P) || 1.0517 x 10=° | 1.0257 X 10™> | 1.1262 x 10~°
Liike(P) 85256.0 3572929 88434.9
AIC(P) 175068.1 736341.9 185234.3

Parcellation Choice
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Some Known Problems

Three important problems:

1. Tracks have noise.

2. Nodes are atomic; but brain
regions are not.

3. There is no agreed upon
standard parcellation.
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Three important problems:

1. Tracks have noise.

2. Nodes are atomic; but brain
regions are not.

3. There is no agreed upon
standard parcellation.
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