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The brain from a network perspective @

Imperial College London

* cognition Is a network f
phenomenon [Sporns, Dial.

Clin. Neurosc. (2013) ]

Brain
parcellation

* no physical trace of certain

diseases, only changes In

: o Imaging
the physical wiring and data
strength of connections
' ' Structural &=+  Functional

* given two brain graphs oructural | ek

representing connectivity,
how similar are they!?

Network

analysis j

(within/between subjects,
between modalities etc.) k




Inference: Naive approach @B.M "
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Why individual parcellations? @
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- Standard anatomical atlases subdivide the brain based on

cytoarchitecture (e.g. Brodmann) or anatomical landmarks (e.g.
Desikan-Killiany)

Individual variability in terms of anatomy or function due to

maturation or brain injury are not accounted for [Timofiyeva,
PLoS One (2014)

Data-driven single subject parcellations capture this variability
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Inexact graph matching @
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* bvaluate how much two graphs share

Graph kernels

Initial labeled binary graphs G and G’

A\
=
| \

Feature vector representations of G and G’

owr(G) =(1,2,1,1,1,1,1,0,1,0,0,1,0,1,1)
dwL(G) =(1,2,1,1,1,1,0,1,0,1,1,0,1,0,1)
kwi(G.G') =< owr(G). owr(G') >=8
Craddock et al., Nature Methods (2013) Jie : ' '
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Graph edit distance @
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* Measure of dissimilarity between graphs, defined directly in
their domain G as a nonnegative function d : G x G — R™,
Able to model structural variation in a very inturtive and
llustrative way.

(9) ppe-spou




GED computation @
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* [he Hungarian algorithm provides a fast approximate solution
to the GED computation [Riesen & Bunke, Img & Vis. Comp., (2009) ]

* Given two labeled graphs G, G2 with |V(G1)| = n and
V(G2)| = m asquare cost matrix C of order n +m s
defined, which encodes all the possible edit operation costs

Cle ... OO

-deletions:
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Node features

G
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* Spatial iInformation (coordinates in standard brain space)

* Feature information (network measures, egonet based)

network features

spatial coordinates
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Node distance @
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* Spatial distance

e Feature distance
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Tailoring GED for brain graphs @
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* |n order to achieve better approximation of the true edit
distance, edge operations need to be involved.

» Constrain substitutions to the nearest N nodes - set cost to Inf
for the rest of the substitutions

if u; € neigh(v;) then
Ci,j = X deuclidean (U’ia uj) + (1 — CV) X dcanberra (Uz'a uj) + dedge(via uj)
else
Ci,j = OO
* Take Into account node betweenness centrality g for the cost
of node insertion/deletion

Ce,j = a+ (1 —a) * g(uy) Cie=0a+(1—a)x*xg(v)



Summary
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Brain connectivity
networks

Labeled graphs
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Graph Edit Distance
(Hungarian algorithm)
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Evaluation @

Imperial College London

e Diffusion and functional MRI data from the Human
Connectome Project

* 30 healthy unrelated subjects as well as 20 monozygotic and
20 dizygotic female twin pairs (MZ twins share 100% of genetic
information, while DZ share only 50%)

* Connectivity driven single-subject parcellations [Parisot et al,
MICCAI, (2016)]

* Structural networks derived with probabilistic tractography

* Functional networks estimated using partial correlation

12



Single-subject parcellations @
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same
subject

different
subjects

GED(same subject) < GED(different subjects)
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Structural networks @
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Single subject structural networks (50 nodes)
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Functional networks
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Monozygotic vs. unrelated pa
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Monozygotic vs. unrelated pair @
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Conclusions @
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* Novel way of evaluating graph similarity between brain
networks based on graph edit distance

* Enforces spatial constraints and incorporates feature
information

* Applied on healthy unrelated subjects and twin pairs and was
able to reflect similarities between corresponding networks

* Future steps:
» Predicting phenotype using GED distance matrix

» Network dynamics (brain development, disease
progression, brain plasticity)
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