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The brain from a network perspective

• cognition is a network 
phenomenon [Sporns, Dial. 

Clin. Neurosc. (2013)]

• no physical trace of certain 
diseases, only changes in 
the physical wiring and 
strength of connections

• given two brain graphs 
representing connectivity, 
how similar are they?  
(within/between subjects, 
between modalities etc.)
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Inference: Naive approach

Graph 
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Why individual parcellations?

• Standard anatomical atlases subdivide the brain based on 
cytoarchitecture (e.g. Brodmann) or anatomical landmarks (e.g. 
Desikan-Killiany) 

• Individual variability in terms of anatomy or function due to 
maturation or brain injury are not accounted for [Timofiyeva, 
PLoS One (2014)] 

• Data-driven single subject parcellations capture this variability
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Inexact graph matching
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•Evaluate how much two graphs share

Craddock et al., Nature Methods (2013) Jie et al. Human Brain Mapping (2014) 



Graph edit distance

• Measure of dissimilarity between graphs, defined directly in 
their domain     as a nonnegative function   this is a long lon.    
Able to model structural variation in a very intuitive and 
illustrative way.
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• The Hungarian algorithm provides a fast approximate solution 
to the GED computation [Riesen & Bunke, Img & Vis. Comp., (2009)]

• Given two labeled graphs     ,      with                   and          
his is a long l   a square cost matrix C of order            is 
defined, which encodes all the possible edit operation costs

GED computation

G1 G2 |V(G1)| = n
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Node features
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• Spatial information (coordinates in standard brain space)

• Feature information (network measures, egonet based)
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Node distance
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• Spatial distance

• Feature distance

fv = (d̄u, s̄u, c̄u)lv = (x, y, z)

Egonet

dl = deucl(v1, v2) = klv1 � lv2kdf = dcanb(v1, v2) =
dX

i=1

|fv1i � fv2i |
|fv1i |+ |fv2i |

d(v1, v2) = ↵ ⇤ deucl(v1, v2) + (1� ↵) ⇤ dcanb(v1, v2)



Tailoring GED for brain graphs

• In order to achieve better approximation of the true edit 
distance, edge operations need to be involved.

• Constrain substitutions to the nearest N nodes - set cost to Inf 
for the rest of the substitutions

if                     then 

else 

• Take into account node betweenness centrality g for the cost 
of node insertion/deletion
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uj 2 neigh(vi)

ci,j = 1

c✏,j = ↵+ (1� ↵) ⇤ g(uj) ci,✏ = ↵+ (1� ↵) ⇤ g(vi)

ci,j = ↵ ⇤ deuclidean(vi, uj) + (1� ↵) ⇤ dcanberra(vi, uj) + dedge(vi, uj)



Summary
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Evaluation
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• Diffusion and functional MRI data from the Human 
Connectome Project 

• 30 healthy unrelated subjects as well as 20 monozygotic and 
20 dizygotic female twin pairs (MZ twins share 100% of genetic 
information, while DZ share only 50%)

• Connectivity driven single-subject parcellations [Parisot et al., 
MICCAI, (2016)]

• Structural networks derived with probabilistic tractography

• Functional networks estimated using partial correlation



Single-subject parcellations
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Structural networks

*     p<0.05
**    p<0.001
ns  non-significant
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Functional networks

*     p<0.05
**    p<0.001
ns  non-significant



Monozygotic vs. unrelated pair
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Monozygotic vs. unrelated pair
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Conclusions

• Novel way of evaluating graph similarity between brain 
networks based on graph edit distance

• Enforces spatial constraints and incorporates feature 
information

• Applied on healthy unrelated subjects and twin pairs and was 
able to reflect similarities between corresponding networks

• Future steps:

‣ Predicting phenotype using GED distance matrix

‣ Network dynamics (brain development, disease 
progression,  brain plasticity)
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