Gender classification and manifold learning on functional brain networks

Sofia Ira Ktena, Salim Arslan, and Daniel Rueckert
How to compare brain networks?

Richiardi and Ng (2013)
Brain networks as SPD matrices

• Brain networks derived from correlation analysis of fMRI data can be characterized by symmetric positive semi-definite matrices

• Sparse estimators impose simple models and provide good fit to the data (GLASSO algorithm)
Recovering connectivity structure

Original connectivity network

Sparse connectivity network $\alpha = 0.2$
Riemannian manifolds

- Covariances do not conform to Euclidean geometry but rather form a Riemannian manifold.
- In the manifold setting, a SPD matrix can be represented as an element in a vector space.
- Convenient computations with eigenvalue decomposition.

\[P = U \, \text{diag} (\sigma_1, \ldots, \sigma_n) \, U^T \]

\[\expm(P) = U \, \text{diag} (\exp(\sigma_1), \ldots, \exp(\sigma_n)) \, U^T \]

\[\logm(P) = U \, \text{diag} (\log(\sigma_1), \ldots, \log(\sigma_n)) \, U^T \]
Log-Riemannian manifold

\[\log_p : M \rightarrow T_p(M) \]

\[\exp_p : T_p(M) \rightarrow M \]
Dimensionality reduction

• Keep PCs that explain 98% of the variance in training set
Dataset

- HCP data
- 2 rfMRI sessions (30min each)
- 100 subjects (46 male, 54 female)
- Pre-processed fMRI data
- Normalized timeseries to 0 mean and standard deviation 1

- How are the nodes defined?
 - Each node corresponds to a ROI from a parcellation scheme
- What is the representative timeseries?
 - Region average timeseries
- How are the edge weights defined?
 - Pearson’s correlation coefficient
- Subject-level analysis
Anatomical Parcellations

- Desikan-Killiany atlas
 \textit{(Desikan et al., NeuroImage 2006)}
 - 35 gyral based regions of interest
 - Based on MRI scans of 40 subjects

- Destrieux atlas
 \textit{(Fischl et al., Cerebral Cortex 2004)}
 - 75 regions of interest per hemisphere
 - Based on probabilistic information of a manually annotated training set
Functional Parcellations

- Three-layer \textit{(Arslan and Rueckert, MICCAI 2015)}
 - Three layer parcellation framework, each targeting a specific problem
- Normalized cuts \textit{(Craddock et al., HBM 2012)}
 - Spatially constrained spectral clustering approach for group clustering
- Joint spectral decomposition \textit{(Arslan et al., IPMI 2015)}
 - Generating group-wise and single-subject parcellations from a joint graphical model
- Region growing \textit{(Blumensath, NeuroImage 2013)}
 - Region growing technique followed by hierarchical clustering
Framework evaluation

- Two different sets of networks based on the two different fMRI sessions
- Check whether networks from the subject lie closer to each other in Riemannian rather than Euclidean space

<table>
<thead>
<tr>
<th>Parcellation method</th>
<th>Number of parcels (per hemisphere)</th>
<th>Euclidean setting</th>
<th>Riemannian setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIKAN-KILLIANY</td>
<td>35</td>
<td>0.54</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.70</td>
<td>0.94</td>
</tr>
<tr>
<td>DESTRIEUX</td>
<td>30</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>3-LAYER</td>
<td>50</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>NCUT</td>
<td>50</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>RG-HC</td>
<td>50</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>RANDOM</td>
<td>35</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.97</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Gender classification (Riemannian space)

Gender classification accuracy for 20-fold cross validation

Classification accuracy

parcels per hemisphere

- JOINT
- 3LAYER
- RGHC
- NCUT
- Random
- Desikan-Killiany
- Destrieux

- 35 parcels
- 50 parcels
- 75 parcels
- 100 parcels
- 150 parcels
Conclusions

• Riemannian framework picks up networks generated from the same subject more accurately than Euclidean setting
• Functional parcellations (and especially the 3LAYER one) outperform the anatomical parcellations in the same task
• Random parcellations perform equivalently well due to more evenly sized parcels
• Differences between the two genders are not significant, but still better than Euclidean setting
• More parcels do not guarantee higher discriminative power
• Framework limited by correspondence between network nodes
Thank you