Gender classification and manifold learning on functional brain networks

Sofia Ira Ktena, Salim Arslan, and Daniel Rueckert

Richiardi and Ng (2013)

Brain networks as SPD matrices

- Brain networks derived from correlation analysis of fMRI data can be characterized by symmetric positive semidefinite matrices
- Sparse estimators impose simple models and provide good fit to the data (**GLASSO** algorithm)

Sparse covariance estimation with GLASSO

Recovering connectivity structure

Riemannian manifolds

- Covariances do not conform to Euclidean geometry but rather form a Riemannian manifold
- In the manifold setting, a SPD matrix can be represented as an element in a vector space
- Convenient computations with eigenvalue decomposition

$$\mathbf{P} = \mathbf{U} \operatorname{diag} \left(\sigma_1, \dots, \sigma_n \right) \mathbf{U}^T$$

 $\exp(\mathbf{P}) = \mathbf{U} \operatorname{diag} \left(\exp(\sigma_1), \dots, \exp(\sigma_n) \right) \mathbf{U}^T$ $\log(\mathbf{P}) = \mathbf{U} \operatorname{diag} \left(\log(\sigma_1), \dots, \log(\sigma_n) \right) \mathbf{U}^T$

Dimensionality reduction

• Keep PCs that explain 98% of the variance in training set

brain parcellation

Log-Euclidean Manifold Dimensionality reduction

Classification

resting state fMRI

Dataset

- HCP data
- 2 rfMRI sessions (30min each)
- 100 subjects (46 male, 54 female)
- Pre-processed fMRI data
- Normalized timeseries to 0 mean and standard deviation 1
- How are the nodes defined?
 - Each node corresponds to a ROI from a parcellation scheme
- What is the representative timeseries?
 - Region average timeseries
- How are the edge weights defined?
 - Pearson's correlation coefficient
- Subject-level analysis

Anatomical Parcellations

- Desikan-Killiany atlas
 (Desikan et al., NeuroImage 2006)
- ° 35 gyral based regions of interest
- Based on MRI scans of 40 subjects

- Destrieux atlas (Fischl et al., Cerebral Cortex 2004)
- 75 regions of interest per hemisphere
- Based on probabilistic information of a manually annonated training set

Functional Parcellations

- Three-layer (Arslan and Rueckert, MICCAI 2015)
 - Three layer parcellation framework, each targeting a specific problem
- Normalized cuts (Craddock et al., HBM 2012)
 - Spatially constrained spectral clustering approach for group clustering
- Joint spectral decomposition (Arslan et al., IPMI 2015)
 - Generating group-wise and single-subject parcellations from a joint graphical model
- Region growing (Blumensath, Neurolmage 2013)
 - Region growing technique followed by hierarchical clustering

Framework evaluation

- Two different sets of networks based on the two different fMRI sessions
- Check whether networks from the subject lie closer to each other in Riemannian rather than Euclidean space

Parcellation method	Number of parcels (per hemisphere)	Euclidean setting	Riemannian setting
DESIKAN-KILLIANY	35	0.54	0.85
DESTRIEUX	75	0.70	0.94
3-LAYER	30	0.99	1.00
	35	1.00	1.00
	50	1.00	1.00
	100	1.00	1.00
NCUT	50	0.95	1.00
RG-HC	50	0.98	1.00
	100	0.97	1.00
RANDOM	35	0.95	1.00
	50	0.95	1.00
	100	0.97	1.00

Gender classification accuracy for 20-fold cross validation

parcels per hemisphere

Conclusions

- Riemannian framework picks up networks generated from the same subject more accurately than Euclidean setting
- Functional parcellations (and especially the 3LAYER one) outperform the anatomical parcellations in the same task
- Random parcellations perform equivalently well due to more evenly sized parcels
- Differences between the two genders are not significant, but still better than Euclidean setting
- More parcels do not guarantee higher discriminative power
- Framework limited by correspondence between network nodes

Thank you

Pioneering research and skills

